Stats 2MB3, Tutorial 2

Jan 23 ${ }^{\text {rd }}, 2015$

Ex. 51, page 44

- 87,103,130,160,180,195,132,145,211,105,145 ,153,152,138,87,99,93,119,129 (min)
- a) Calculate the sample variance and standard deviation.
- b) If the observation were re-expressed in hours, what would be the resulting values of the sample variance and sample standard deviation? Answer without actually performing the re-expression.
- a)

Sample variance is 1264.77 , sample standard deviation is 35.564 .
b)

Proposition:
If $y_{1}=c x_{1}, \ldots, y_{n}=c x_{n}$, then $s_{y}^{2}=c^{2} s_{x}^{2}, s_{y}=|c| s_{x}$.
Proof:
since $\bar{y}=\bar{x}$, then
$s_{y}^{2}=\frac{\sum\left(\mathrm{y}_{i}-\bar{y}\right)^{2}}{n-1}=\frac{\sum\left(c \mathrm{x}_{i}-c \bar{x}\right)^{2}}{n-1}=\frac{c^{2} \sum\left(\mathrm{x}_{i}-\bar{x}\right)^{2}}{n-1}=c^{2} s_{x}^{2}$

- If $y=$ measure the time by hours,
$x=$ by minutes,
then $\mathrm{y}=\mathrm{x} / 60$, and $\mathrm{c}=1 / 60$.
By the proposition,
$s_{y}^{2}=c^{2} s_{x}^{2}$
the new sample variance is equal to
1264.77/3600=0.351
and the new sample standard deviation is equal to $35.564 / 60=0.593$

Ex 56, page 44

- 16.35,18.85,16.20,17.75,19.58,17.73,22.75,23 .78,23.25,19.08,19.62,19.20,20.05,17.85,19.1 7,19.48,20.00,19.97,17.48,17.15,19.07,19.90, 18.68,18.82,19.03,19.45,19.37,19.20,18.00,19 .60,19.33,21.22,19.50,15.30,22.25
- Use methods from this chapter, including a boxplot that shows outliers, to describe and summarize the data.

```
15 | 3
16 | 24
17 | 25789
18 | 0789
19 | 011222345556669
20 | 001
21 | 2
22 | 38
23 | 38
```

Histogram of data2

Ex 74, page 47

- The mode of a numerical data set is the value that occurs most frequently in the set.
- a) Determine the mode for the data .95,.85,.92,.95,.93,.86,1.00,.92,.85,.81,.78,.93,. $93,1.05, .93,1.06,1.06, .96, .81, .96$; b) For a categorical sample, how would you define the modal category?
- a)

- The mode is 0.93 .
- b)

Here is an example for categorical data: Yates Cup Recipients in the recent 15 years

- 2000 - McMaster Marauders
- 2001 - McMaster Marauders
- 2002 - McMaster Marauders
- 2003 - McMaster Marauders
- 2004 - Wilfrid Laurier Golden Hawks
- 2005 - Wilfrid Laurier Golden Hawks
- 2006 - Ottawa Gee-Gees
- 2007 - Western Ontario Mustangs
- 2008 - Western Ontario Mustangs
- 2009 - Queen's Golden Gaels
- 2010 - Western Ontario Mustangs
- 2011 - McMaster Marauders
- 2012 - McMaster Marauders
- 2013 - Western Ontario Mustangs
- 2014 - McMaster Marauders

